icon
Course Description

Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka "deep learning") approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This lecture collection is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. From this lecture collection, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision.

icon
Instructor Details

Fei-Fei Li

Dr. Fei-Fei Li is a Professor in the Computer Science Department at Stanford University, and Co-Director of Stanford's Human-Centered AI Institute. She served as the Director of Stanford's AI Lab from 2013 to 2018. And during her sabbatical from Stanford from January 2017 to September 2018, she was Vice President at Google and served as Chief Scientist of AI/ML at Google Cloud. Dr. Fei-Fei Li obtained her B.A. degree in physics from Princeton in 1999 with High Honors, and her PhD degree in electrical engineering from California Institute of Technology (Caltech) in 2005. She joined Stanford in 2009 as an assistant professor. Prior to that, she was on faculty at Princeton University (2007-2009) and University of Illinois Urbana-Champaign (2005-2006).

icon
Reviews

0.0

0 total reviews

5 star 4 star 3 star 2 star 1 star
% Complete
% Complete
% Complete
% Complete
% Complete